(15) Miao, Z.P.; Wang, X.M.; Tsai M-.C.; Jin, Q.Q.; Liang, J.S.; Ma, F.; Wang, T.Y.; Zheng, S.J.; Hwang, B-.J.; Huang, Y.H.; Guo, S.J.; Li, Q.*, Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy, Adv. Energy Mater., 2018, doi: 10.1002/aenm.201801226.
(14) Xie, H.; Wang, T.Y.; Liang, J.S.; Li, Q.*; Sun, S.H.*, Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, doi.org/10.1016/j.nantod.2018.05.00
(13) Wang, T.Y.; Nam, G.; Jin, Y.; Wang, X.; Ren, P.; Kim, M.G.; Liang, J.; Wen, X.; Jang, H.; Han, J.; Huang, Y.; Li, Q.*; Cho, J. *, NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues, Adv. Mater., 2018, in press.
(12) Wang, T.; Xie, H.; Chen, M.; Alyssa, D.; Cho, J*.; Wu, G*.; Li, Q.*, Precious Metal-free Approach to Hydrogen Electrocatalysis for Energy Conversion: from Mechanism Understanding to Catalyst Design, Nano Energy, 2017, 42, 69-89.
(11) Li, Q.*; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.; Sun, S.*, Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure, J. Am. Chem. Soc.2017, 139, 4290-4293. (IF= 13.038)
(10) Li, Q.; Sun, S., Recent Advances in the Organic Solution Phase Synthesis of Metal Nanoparticles and Their Electrocatalysis for Energy Conversion Reactions, Nano Energy, 2016, 29, 178-197. (IF = 10.325)
(9) Li, Q.*; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S.*, Controlled Assembly of Cu Nanoparticles on Pyridinic-N Rich Graphene for Electrochemical Reduction of CO2 to Ethylene, Nano Energy, 2016, 24, 1-9. (IF = 10.325)
(8) Li, Q.; Wen, X.; Wu, G.; Chung, H. T.; Zenelay, P., High-Activity PtRuPd/C Catalyst for Direct Dimethyl Ether Fuel Cell, Angew. Chem. Int. Ed., 2015, 127, 7634-7638. (IF= 11.261)
(7) Wu, L. H.?; Li, Q.?; Wu, C.; Zhu, H.; Garcia, A.; Shen, B.; Sun, S. H., Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction, J. Am. Chem. Soc., 2015, 137, 7071-7074. (IF= 11.336) (?Equal contribution)
(6) Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Zhu, H.; Sun, S. H., New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid, Nano Lett., 2015, 15, 2468-2473. (IF= 13.592) (ESI highly cited paper)
(5) Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R.G.; Cho, J.; Wang, H.L.; Wu, G., Graphene/Graphene Tube Nanocomposites Templated from Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li-O2 Batteries, Adv. Mater., 2014, 26, 1378-1386. (IF= 17.493) (ESI highly cited paper)
(4) Li, Q.; Cao, R.G.; Cho, J.; Wu, G., Nanocarbon Electrocatalysts for Oxygen-Reduction in Alkaline media for Advanced Energy Conversion and Storage, Adv. Energy Mater., 2014, 4, 1301415. (IF= 16.146) (ESI highly cited paper)
(3) Li, Q.; Mahmood, N.; Hou, Y.; Sun, S. H., Graphene and Its Composites with Nanoparticles for Electrochemical Energy Applications, Nano Today, 2014, 9, 668–683. (IF = 15.000) (ESI highly cited paper) (featured in Nano Today's website under Editors' Highlights)
(2) Li, Q.; Pan, H.; Higgins, D.; Cao, R.; Zhang, G.; Lv, H.; Wu, K.; Cho, J.; Wu, G., Metal-Organic Framework Derived Bamboo-like Nitrogen-Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Electrocatalysts, Small, 2015, 11, 1443–1452. (IF = 8.368) (ESI highly cited paper) (Highlighted in MaterialsViews: http://www.materialsviews.com/graphene-tubes-electrocatalysis/)
(1) Li, Q.; Wu, G.; Mack, N.; Chung, H.; Zelenay, P., Phosphate-Tolerant Oxygen Reduction Catalysts, ACS Catalysis, 2014, 4, 3193–3200. (IF = 9.312) (ACS Editors' Choice)